

Méthode de justification de la stabilisation des murs maçonnés par bracons en situation de séisme

Christophe Merz Novembre 2020

Siège social 10, rue Galilée 77420 Champs-sur-Marne Tél +33 (0)1 72 84 97 84 www.fcba.fr

Siret 775 680 903 00132 APE 7219Z Code TVA CEE : FR 14 775 680 903

Institut technologique FCBA : Forêt, Cellulose, Bois – Construction, Ameublement

Partenaires

Avec le soutien

REALISATION

L'Institut Technologique FCBA (Forêt Cellulose Bois-Construction Ameublement), a pour mission de promouvoir le progrès technique, participer à l'amélioration de la performance et à la garantie de la qualité dans l'industrie. Son champ d'action couvre l'ensemble des industries de la sylviculture, de la pâte à papier, de l'exploitation forestière, de la scierie, de l'emballage, de la charpente, de la menuiserie, de la préservation du bois, des panneaux dérivés du bois et de l'ameublement. FCBA propose également ses services et compétences auprès de divers fournisseurs de ces secteurs d'activité. Pour en savoir plus : **www.fcba.fr**

En partenariat avec

FINANCEMENT

Le CODIFAB, Comité Professionnel de Développement des Industries Françaises de l'Ameublement et du Bois, a été créé à la demande des professions de l'ameublement et de la seconde transformation du bois : CAPEB, UFME, UICB, UIPC, UIPP, UMB-FFB, UNAMA UNIFA.

Le CODIFAB a pour mission de conduire et financer, par le produit de la Taxe Affectée, des actions collectives dans le cadre des missions mentionnées à l'article 2 de la loi du 22 Juin 1978. Les projets proposés sont arbitrés par les représentants des professionnels qui valident également leur réalisation. Pour en savoir plus : **www.codifab.fr**

SOMMAIRE

1.	INTRODUCTION	3
	1.1 Contexte	3
	1.2 Objectif	3
2.	SOLUTION DE STABILISATION PAR BRACONS	4
	2.1 Principe de stabilisation	4
	2.2 Domaine d'emploi visé	4
	2.3 Exigences constructives	5
	2.4 Approche de dimensionnement envisagée	5
3.	METHODES D'ANALYSE SISMIQUE	6
	3.1 Modélisations spatiales	6
	3.1.1 Analyse modale	6
	3.1.2 Methode des Forces Laterales 3.1.3 Approche d'analyse pour un bâtiment à un niveau	6
	3.1.4 Approche d'analyse pour le cas d'un bâtiment à deux niveaux	7
	3.2 Modélisations dans le plan de la stabilisation	8
4.	ETUDE DE CAS	9
	4.1 Hypothèses générales	9
	4.1.1 Modélisations spatiales (3D)	9
	4.1.2 Modelisations dans le plan de la stabilisation (2D stab) 4.1.3 Caractéristiques des composants	. 10 . 10
	4.1.4 Actions prises en compte	. 10
	4.2 Description des cas d'étude	. 11
	4.2.1 Cas 1 : « Croupes imbriquées »	. 11
	4.2.3 Cas 3 : « Qualle parts »	. 15
	4.2.4 Cas 4 : « Bâtiment en L »	. 18
5.	Résultats d'analyses des configurations de base	23
	5.1.1 Cas 1 « Croupes imbriquées »	. 23
	5.1.2 Cas 2 : « Quaire pans » 5.1.3 Cas 3 : « Deux pans avec avancée »	. 26 . 31
	5.1.4 Cas 4 : « Bâtiment en L »	. 34
	5.2 Modifications de configurations	37
	5.2.1 Réduction de longueurs de murs travaillants 5.2.2 Ajout d'un étage	. 37 . 44
6	SYNTHESE	52
0.	6.1 Configurations de base	52
	6.2 Configurations modifiées	.53

	6.2.1 Réduction des longueurs de mur travaillantes	
LOGIQUE	6.2.2 Bâtiment à étage	53
7.	METHODE SIMPLIFIEE	55
	7.1 Domaine d'application	55
	7.1.1 Zones sismiques et catégorie d'importance	55
	7.1.2 Type de construction	55
	7.1.3 Configuration en plan	55
	7.1.4 Configuration en élévation	55
	7.2 Système de stabilisation	
	7.2.1 Bracons bois	
	7.2.2 Chainages	56
	7.3 Principes d'analyse	56
	7.3.1 Coefficient de comportement	
	7.3.2 Détermination des actions sismiques	
	7.3.3 Modélisation de la stabilisation	
		50
	7.4 Justifications	
	7.4.1 Chainages	
	7.4.2 Bracons	59

1. INTRODUCTION

1.1 Contexte

En zone sismique, pour les constructions maçonnées avec combles non habitables, la stabilisation hors plan en tête des murs est conditionnée à la conception et la mise en œuvre d'un diaphragme horizontal dans le plan des entraits. Ceci est donc généralement confié au lot charpente, en prévoyant un plan continu de panneaux à base de bois fixés sous les entraits ou des poutres au vent triangulées sur la périphérie. Ce contreventement de toiture doit être suffisamment rigide pour ne pas influer sur la distribution des efforts horizontaux en tête de murs. En alternative, pour des petits ouvrages courants, les professionnels des charpentes industrialisées en bois ont étudié la possibilité de faire participer les chainages horizontaux en tête de mur à la reprise des efforts hors plan, ceux-ci étant stabilisés ponctuellement par des éléments bois appelés « bracons » disposés dans le plan des entraits qui fonctionnent en tirant-buton.

Un projet de note a ainsi été rédigé par le SCIBO (Syndicat national des fabricants de structures et Charpentes Industrialisées en Bois) afin de proposer une méthode de conception et de justification de la « reprise de stabilité des murs sous efforts sismiques horizontaux par un système de bracons ».

Le principe est de se ramener à une analyse statique en plan du système de stabilisation formé par les bracons en bois associés aux chainages horizontaux en béton armé soumis à une charge horizontale uniformément répartie. Le ferraillage des chaînages horizontaux étant défini, le dimensionnement des bracons et de leurs ancrages est mené de manière à limiter les sollicitations dans les chainages pour ne pas excéder leur capacité résistante maximale en flexion composée.

Une analyse de cette méthode simplifiée a été réalisée, sous la forme d'une « Note de positionnement Synerbois » (partenariat FCBA-CSTB) émise en 2017. Elle indiquait qu'une telle approche simplifiée, faisant abstraction de la réponse globale du bâtiment liée à la disposition des éléments de contreventements verticaux, ne pouvait être directement appliquée sans gardefous. En effet, suivant l'Eurocode 8, une analyse spatiale doit théoriquement être menée puisque le système de stabilisation impacte la distribution des efforts horizontaux. Quelques configurations avaient donc été étudiées afin de comparer les résultats de cette approche avec ceux d'une analyse conventionnelle. Elle concluait que l'application d'une telle méthode simplifiée pouvait être envisageable, mais dans un domaine d'application restreint et avec des modalités particulières (coefficients forfaitaires ou autres...) qu'il restait à définir. Pour cela une étude paramétrique sur un plus grand nombre de configurations représentatives devait être menée.

Cette étude a été menée à partir de différents cas de projets de maisons individuelles retenus par les professionnels pour prendre en compte les principales typologies constructives potentiellement défavorables en situation de séisme, dans le domaine d'emploi initialement visé : maisons individuelles et petits bâtiments d'habitation collectifs en maçonnerie limités à R+1, avec combles non aménageables dont la charpente est constituée de fermes industrialisées en bois.

1.2 Objectif

L'objectif est de définir le domaine d'emploi et les conditions d'applications d'une méthode simplifiée de justification de la stabilité des murs maçonnés par bracons en situation de séisme. Cette méthode doit permettre de s'affranchir d'une analyse spatiale fastidieuse.

2. SOLUTION DE STABILISATION PAR BRACONS

2.1 **Principe de stabilisation**

La solution étudiée de stabilisation horizontale des murs en situation de séisme par système de bracons ne concerne que les bâtiments en maçonnerie dont la charpente est constituée de fermes industrialisées en bois.

Le principe consiste à disposer, au niveau du plan des entraits ou directement en dessous, des éléments horizontaux en bois appelés « bracons » reliant les têtes de murs afin de raidir horizontalement les chainages et permettre la transmission des efforts latéraux.

Figure 1 : Vue en plan principe de stabilisation (extrait Note SCIBO)

Le système de stabilisation par bracons doit être conçu de manière à limiter la flexion perpendiculaire au plan des murs dans les chaînages horizontaux.

Figure 2 : Vue 3D principe de stabilisation (extrait Note SCIBO)

2.2 Domaine d'emploi visé

Le domaine d'emploi visé dans la Note SCIBO est le suivant :

- Zones sismiques 2 à 4
- Maisons individuelles et bâtiments d'habitation collectifs limités à R+1, de catégorie d'importance II
- Configuration en plan :
 - o Dimensions maximales 10 m x 20 m

• Longueur maximale de façade entre murs de refend : 12 m

- Configuration en élévation :
 - Hauteur des façades limitée à 3,3 m en RDC et 6,6 m en R+1

2.3 Exigences constructives

Les murs en maçonnerie sont réalisés conformément aux prescriptions du NF DTU 20.1 « Ouvrages en maçonnerie de petits éléments – parois et murs" et à l'Eurocode 6. Les maconneries sont chaînées.

Les dimensions de la section transversale des chaînages verticaux et horizontaux sont supérieures ou égales à 15 cm, conformément à l'Eurocode 8 – section 9.

Le ferraillage minimal des chaînages horizontaux et verticaux est au minimum de 4 HA10.

La charpente est réalisée conformément au NF DTU 31.3 « Charpentes en bois assemblées par connecteurs métalliques ou goussets ».

2.4 Approche de dimensionnement envisagée

Le ferraillage des chaînages horizontaux étant défini, on utilise leur capacité à reprendre un moment fléchissant hors plan dû à un chargement horizontal en tête de mur.

Les différents bracons doivent être disposés de manière à limiter les sollicitations dans les chainages pour ne pas atteindre la résistance maximale ELU de la section de béton armé en flexion composée.

L'effort sismique agissant sur les chainages est évalué par la méthode des forces latérales suivant le §4.3.3.2 de l'EC8.

La détermination des efforts internes est effectuée à partir d'une analyse statique dans le plan de la stabilisation.

Figure 3 : Schéma de principe de reprise des efforts (extrait Note SCIBO)

3. METHODES D'ANALYSE SISMIQUE

3.1 Modélisations spatiales

Deux types d'analyses ont été menés avec les modèles spatiaux (3D) :

3.1.1 Analyse modale

L'analyse modale en utilisant les spectres de réponse est la méthode applicable en l'absence de diaphragme rigide horizontal en tête de murs.

3.1.2 Méthode des Forces Latérales

La méthode des forces latérales, en déterminant l'effort tranchant sismique à la base dans chaque direction par la relation suivante :

$$F_b = S_d(T_1).m.\lambda$$

La période fondamentale de vibration T_1 est obtenue de manière approchée par la formule (4.6) de l'EC8 rappelée ci-dessous :

$$T_1 = C_t \cdot H^{3/4}$$

avec H : hauteur du bâtiment en m C_t : pris égal à 0,05

Dans le cas d'un bâtiment d'un seul niveau, l'effort sismique horizontal agissant au niveau du plan de la stabilisation est égal à l'effort tranchant à la base dans chaque direction.

Dans le cas d'un bâtiment R+1, les efforts sismiques agissant au niveau du plancher d'étage et du système de stabilisation en tête de mur sont déterminés en considérant une distribution linéaire avec la hauteur suivant la formule (4.11) de l'EC8 rappelée ci-dessous :

$$F_i = F_b \cdot \frac{z_i \cdot m_i}{\sum z_i \cdot m_i}$$

avec

 $z_i,\,z_j$: hauteur de niveau par rapport au soubassement $m_i,\,m_j$: masse des niveaux i et j

3.1.3 Approche d'analyse pour un bâtiment à un niveau

Une approche technique conforme à l'application de la méthode modale spectrale est présentée ici de manière analytique.

Dans cette approche, pour chacun des murs, il y a lieu de considérer la force d'inertie correspondante à l'excitation modale spectrale.

FCBA

Application de la méthode modale spectrale

Pour chacun des murs, on peut montrer que la force d'inertie apportée en tête de chaque mur est inférieure à :

 $F_{t \hat{e} t e_mur} = (S_d(T))_{max} * \mathsf{m}$ avec $(S_d(T))_{max} = a_g * S * \frac{2.5}{q}$

et m : Masse de la toiture associée à la descente de charges sur le mur en référence complété de la masse

On peut ensuite étudier chacun des murs en flexion hors plan avec l'application de forces latérales comme s'il était du ressort de §4.3.3.2.2 et §4.3.3.2.3 de NF EN 1998-1.

L'application de cette approche à l'ensemble des murs revient à utiliser la méthode des forces latérales pour chacun des murs.

On est ainsi ramené à l'étude d'un système mécanique soumis à l'application de charges horizontales en tête de murs.

Figure 4 : : Représentation du schéma d'analyse modale spectrale appliqué à des éléments de murs individuels. (cas d'un bâtiment à un étage en l'absence de diaphragme en partie supérieure)

Figure 5 : : Représentation du schéma d'analyse modale spectrale appliqué à des éléments de murs individuels dans le cas d'un bâtiment à 2 niveaux.

(¹): Par une approche simplifiée d'application de la méthode des forces latérales à un mur reprenant les masses de deux niveaux en application de §4.3.3.2.2 et §4.3.3.2.3, on parvient à démontrer l'expression (Eq. 1)

Figure 6 : : Représentation du schéma mécanique de chargement par une approche de type méthode des forces latérales

3.2 Modélisations dans le plan de la stabilisation

Dans le cas des modélisations en plan du système de stabilisation (2D-stab), l'action sismique agissant sur les chainages dans chaque direction X et Y est déterminée suivant la méthode des forces latérales comme décrit précédemment.

L'effort sismique est réparti de manière uniforme dans le chainage horizontal.

4. ETUDE DE CAS

4.1 Hypothèses générales

Les différents cas étudiés ont fait l'objet d'analyses à partir de modélisations spatiales (3D) et de modélisations simplifiées dans le plan du système de stabilisation (2D-stab).

Les effets sismiques sont déterminés sur la base d'un comportement élastique linéaire de la structure.

Conformément au § 9.3 NA de l'EC8, le coefficient de comportement q à utiliser pour les maçonneries chaînées est q= 2,5.

4.1.1 Modélisations spatiales (3D)

✓ Murs en maçonnerie

Seule la raideur en contreventement des murs est prise en compte. La rigidité hors plan des murs est négligée.

La raideur latérale d'un élément de mur en maçonnerie suivant la direction x est déterminée en utilisant la relation suivante :

$$K_{\chi} = \left(\frac{h^3}{3.E.I_{\mathcal{Y}}} + \frac{h}{G.l.t}\right)^{-1}$$

avec,

h : hauteur du mur

E : module d'élasticité de la maçonnerie, E= 1000 . $f_k/2$

G : module de cisaillement de la maçonnerie, G =0,4 E

Le coefficient 1/2 est pris sur le module E, donc G pour prendre en compte la rigidité fissurée, conformément au 9.4 de l'EC8.

I_y : moment d'inertie de la section transversale du mur dans la direction x,

$$I_y = \frac{t \cdot l^3}{12}$$

I : longueur de l'élément de mur

Les éléments de murs sont considérés individuellement entre chaque ouverture de surface supérieure à 1,5 m².

✓ Chaînages

Les chainages horizontaux surmontent les murs en maçonnerie à chaque niveau. Les chainages verticaux sont disposés

- à chaque extrémité d'éléments de murs,
- au sein d'un élément de mur, le cas échéant, afin que la distance entre chainages verticaux n'excède pas 5 m
- à chaque angle de murs.

Aux intersections de murs la liaison entre chainages horizontaux est considérée articulée. Aux extrémités des chainages horizontaux la liaison est considérée articulée.

✓ Bracons

Aux extrémités des bracons la liaison avec le chainage est considérée articulée. Les bracons sont considérés maintenus par les entraits vis-à-vis du risque d'instabilité par flambement.

4.1.2 Modélisations dans le plan de la stabilisation (2D stab)

Les hypothèses suivantes sont retenues pour la modélisation en plan du système triangulé formé par les chainages horizontaux en tête de murs et les bracons :

- aux intersections de murs la liaison entre chainages horizontaux est considérée articulée ;
- aux extrémités des bracons la liaison avec le chainage est considérée articulée ;
- chaque extrémité de mur constitue un point d'appui qui bloque la translation dans la direction du mur.

4.1.3 Caractéristiques des composants

✓ Murs en maçonnerie:

Blocs de béton creux de 20 cm de largeur et 20 cm de hauteur Béton de granulats courants groupe 3, $R_c = 4$ MPa, $f_k = 2,61$ MPa

Chaînages en béton armé

Remplissage béton : section 15x15 cm², classe C20/25 Armatures 4 HA10

Le diagramme d'interaction Moment résistant / Effort Normal résistant à l'ELU-sismique d'un tel chainage est reproduit ci-dessous :

Figure 7 Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN)

✓ Bracons en bois massif

Classe mécanique C24 Section : b=36 mm x h=97 mm

4.1.4 Actions prises en compte

Charges permanentes

- toiture : 50 daN/m², suivant le rampant
- plafond : 20 daN/m²
- murs : 300 daN/m²

plancher étage : 400 daN/m²

charges exploitation

- plancher étage : 150 daN/m²

Sismique

- zone 4
- classe de sol E
- catégorie d'importance II

4.2 Description des cas d'étude

Les principales caractéristiques des différents cas de projets de maisons individuelles soumis par les professionnels pour étude sont présentées ci-dessous.

4.2.1 Cas 1 : « Croupes imbriquées »

✓ Description

Le bâtiment est constitué de deux corps imbriqués, dont l'emprise au sol s'inscrit dans un rectangle de 17,4 m de longueur par 15,3 m de largeur. La toiture de chaque corps est à quatre pans (pente 30%).

Figure 9 : Vue en élévation façade Est - Cas 1 « Croupes imbriquées »

Les principales caractéristiques du bâtiment considérées pour l'étude sont les suivantes :

		Distance (m)				Aire (m²)	Poids (daN)	
				plan		élév ^{tn}		
			Х	Y	X+Y	Z		
Toiture	Superficie	Stoit					212	10600
Tollule	Poids	Ptoit						
	Superficie	SPlafond					184	
	Poids	P _{Plafond}						3680
Plafond	Dimensions maxi en plan	L _X , L _Y	17,4	15,3				
	Coord. Centre de Gravité	X _G ,Y _G	9,3	7,6				
	Rayon de giration massique	ls			6,22			
Chainages	Longueurs (couronnements)	L _{chH}	38,4	41,4	79,8			
Onamages	Poids	Pch						15820
	Hauteur	H _m				2,7		
	Poids	Pmurs						45440
	Longueur travaillante cumul	Lm	20,7	32,3	53,0			
Murs	Ratio longueur travail. mini	L _{min} /L _{x,y}	13%	29%				
	Ratio longueur travail. mini	$L_{max}/L_{x,y}$	45%	48%				
	Coord. Centre de Raideur	X _c ,Y _c	4,8	5,8				
	Rayon de torsion	r _x , r _y	7,5	8,8				
Potraits	Superficie totale	S∑retraits					38	
Retraits	Superficie max	Sretrait max					23	
	Total							75540

Tableau 1 : Caractéristiques bâtiment Cas 1 « Croupes imbriquées »

Régularité en plan

L'examen des différents critères de régularité en plan définis au § 4.2.3.2 de l'EC8 est présenté ci-dessous :

Paramètre	Valeur	Seuil EC8	Critère vérifié	
Symétrie en plan				non
Compacité	Sretrait max/Splancher	13%	≤ 5%	non
Elancement	L _{max} /L _{min}	1,1	≤ 4	oui
Excentricité structurale	e _{0x} /r _x	0,6	≤ 0,3	non
	e _{0y} /r _y	0,20	≤ 0,3	oui
	r _x ∕ Is	1,2	≥1	oui
	r _Y / I _s	1,4	≥1	oui

Tableau 2 : Régularité en plan bâtiment Cas 1 « Croupes imbriquées »

✓ Stabilisation

L'implantation des bracons retenue pour l'étude est présentée sur la figure suivante :

Figure 10 : Vue en plan - Cas 1 « Croupes imbriquées » - implantation des bracons

4.2.2 Cas 2 : « Quatre pans »

✓ Description

Le bâtiment fait une emprise au sol rectangulaire de 17,8 m de longueur par 9,3 m de largeur. La toiture est à quatre pans (pente 30%).

Figure 11 : Vue en plan - Cas 2 « Quatre pans »

Figure 12 : Vue en élévation façade Nord-Est - Cas 2 « Quatre pans »

Caractéristiques

Les principales caractéristiques du bâtiment considérées pour l'étude sont les suivantes :

				Distance (m)				Poids (daN)
				plan		élév ^{tn}		
			Х	Y	X+Y	Z		
Toiture	Superficie	Stoit					172	
Tonure	Poids	Ptoit						8600
	Superficie	SPlafond					150	
	Poids	PPlafond						3000
Plafond	Dimensions maxi en plan	Lx, Ly	17,8	9,3				
	Coord. Centre de Gravité	X _G ,Y _G	8,9	4,7				
	Rayon de giration massique	ls			5,8			
Chainages	Longueurs (couronnements)	L _{chH}	35,9	21,7	57,6			
Onamages	Poids	Pch						3130
	Hauteur	Hm				2,7		
	Poids	Pmurs						33820
	Longueur murs travaillants	Lm	25,9	17,2	43,1			
Murs	Ratio longueur travail. mini	L _{min} /L _{x,y}	17%	9%				
	Ratio longueur travail. mini	L _{max} /L _{x,y}	66%	94%				
	Coord. Centre de Raideur	X _c ,Y _c	13,6	6,5				
	Rayon de torsion	r _x , r _y	7,0	6,9				
Potraite	Superficie totale	S∑retraits					7,2	
Netraits	Superficie max	Sretrait max					4,9	
	Total							48550

Tableau 3 : Caractéristiques bâtiment Cas 2 « Quatre pans »

Régularité en plan

L'examen des différents critères de régularité en plan définis au § 4.2.3.2 de l'EC8 est présenté ci-dessous :

Paramètre	Valeur	Seuil EC8	Critère vérifié	
Symétrie en plan				oui
Compacité	Sretrait max/Splancher	3%	≤ 5%	oui
Elancement	L _{max} /L _{min}	1,9	≤ 4	oui
Excentricité structurale	e _{0x} /r _x	0,7	≤ 0,3	non
	e _{0y} /r _y	0,27	≤ 0,3	oui
	r _x ∕ I _s	1,2	≥1	oui
	r _Y / I _s	1,2	≥1	oui

Tableau 4 : Régularité en plan bâtiment Cas 2 « Quatre pans »

Stabilisation

L'implantation des bracons retenue pour l'étude est présentée sur la figure suivante :

Figure 13 : Vue en plan - Cas 2 « Quatre pans » - implantation des bracons

4.2.3 Cas 3 : « Deux pans avec avancée »

✓ Description

Le bâtiment est en forme de L qui s'inscrit dans un rectangle de 17,4 m de longueur par 15,3 m de largeur.

Les toitures du corps principal et de l'avancée sont à deux pans (pente 30%).

Figure 14 : Vue en plan - Cas 3 « Deux pans avec avancée»

Figure 15 : Vue en élévation façade Ouest - Cas 3 « Deux pans avec avancée »

✓ Caractéristiques

Les principales caractéristiques du bâtiment considérées pour l'étude sont les suivantes :

IQUE				Dis	stance (m)		Aire (m ²)	Poids (daN)
				plan		élév ^{tn}		
			Х	Y	X+Y	Z		
Taitura	Superficie	Stoit					124	
Tonure	Poids	P _{toit}						6200
	Superficie	SPlafond					119	
	Poids	PPlafond						1960
Plafond	Dimensions maxi en plan	L _X , L _Y	12,5	12,7				
	Coord. Centre de Gravité	X _G ,Y _G	7,1	5,1				
	Rayon de giration massique	ls			4,9			
Chainagaa	Longueurs (couronnements)	L _{chH}	24,8	25,6	50,4			
Chainages	Poids	Pch						12100
	Hauteur	Hm				2,7		
	Poids	Pmurs						30760
	Longueur murs travaillants	Lm	17,8	18,9	36,7			
Murs	Ratio longueur travail. mini	L _{min} /L _{x,y}	37%	36%				
	Ratio longueur travail. mini	L _{max} /L _{x,y}	61%	75%				
	Coord. Centre de Raideur	X _c ,Y _c	9,4	6,3				
	Rayon de torsion	r _x , r _y	5,8	6,3				
Potroite	Superficie totale	S∑retraits					20	
Retraits	Superficie max	Sretrait max					20	
	Total							51020

Tableau 5 : Caractéristiques bâtiment Cas 3 « Deux pans avec avancée»

Régularité en plan

INSTITUT TE

L'examen des différents critères de régularité en plan définis au § 4.2.3.2 de l'EC8 est présenté ci-dessous :

Paramètre	Valeur	Seuil EC8	Critère vérifié	
Symétrie en plan				non
Compacité	Sretrait max/Splancher	17%	≤ 5%	non
Elancement	L _{max} /L _{min}	1	≤ 4	oui
Excentricité structurale	e _{0x} /r _x	0,40	≤ 0,3	non
	e _{0y} /r _y	0,20	≤ 0,3	oui
	r _x ∕ I _s	1,2	≥1	oui
	r _Y / Is	1,3	≥1	oui

Tableau 6 : Régularité en plan bâtiment Cas 3 « Deux pans avec avancée»

✓ Stabilisation

L'implantation des bracons retenue pour l'étude est présentée sur la figure suivante :

Figure 16 : Vue en plan - Cas 3 « Deux pans avec avancée » - implantation des bracons

```
4.2.4 Cas 4 : « Bâtiment en L »
```

✓ Description

Le bâtiment est constitué d'un corps principal en forme de L qui s'inscrit dans un rectangle de 13,9 m de longueur par 12,4 m de largeur et d'un garage attenant, dans le prolongement du grand côté du L, de 4,4 m de largeur par 9,8 m de longueur.

La toiture du corps principal est constituée d'une partie à deux pans (pente 30%) sur le grand côté se raccordant avec la partie avec une croupe sur le petit côté.

La toiture du garage est à simple pente (30%).

Figure 17 : Vue en plan - Cas 4 « Bâtiment en L»

Figure 18 : Vue en élévation façade Sud - Cas 4 « Bâtiment en L»

Caractéristiques

Les principales caractéristiques du bâtiment considérées pour l'étude sont les suivantes :

				Dis	Aire (m²)	Poids (daN)		
				plan élév ^{tn}				
			Х	Y	X+Y	Z		
Toituro	Superficie	Stoit					151	
Tollule	Poids	P _{toit}						7550
	Superficie	SPlafond					143	
Disfond	Poids	PPlafond						2860
Flatonu	Dimensions maxi en plan	L _X , L _Y	13,9	12,4				
	Coord. Centre de Gravité	X _G ,Y _G	6,2	5,4				

Corps principal

INSTITUT T

		Rayon de giration massique	ls			5,2			
INOLO	Chainagaa	Longueurs (couronnements)	L_{chH}	27,8	24,8	52,6			
	Chainages	Poids	Pch						10180
		Hauteur	Hm				2,8		
		Poids	Pmurs						32470
		Longueur murs travaillants	Lm	19,0	20,3	39,3			
	Murs	Ratio longueur travail. mini	L _{min} /L _{x,y}	28%	78%				
		Ratio longueur travail. mini	L _{max} /L _{x,y}	27%	77%				
		Coord. Centre de Raideur	Xc,Yc	7,3	2,2				
		Rayon de torsion	r _x , r _y	7,5	8,9				
	Detroite	Superficie totale	S∑retraits					14,5	
	Retraits	Superficie max	Sretrait max					14,5	
		Total							53060

Tableau 7 : Caractéristiques bâtiment Cas 4 « Bâtiment en L»-Corps principal

Garage	е
--------	---

Distance (m)						Aire (m²)	Poids (daN)	
				plan		élév ^{tn}		
			Х	Y	X+Y	Z		
Toituro	Superficie	Stoit					45	
l'oiture	Poids	Ptoit						2200
	Superficie	SPlafond					43	
	Poids	PPlafond						
Plafond	Dimensions maxi en plan	Lx, Ly	4,4	9,8				
	Coord. Centre de Gravité	X _G ,Y _G	16,1	4,9				
	Rayon de giration massique	ls			3,1			
Chainagaa	Longueurs (couronnements)	L _{chH}	8,8	19,6	28,4			
Chainages	Poids	Pch						5860
	Hauteur	Hm				3,6/2,4		
	Poids	Pmurs						20780
Murs	Longueur murs travaillants	Lm	5,5	18,8	24,3			
	Coord. Centre de Raideur	X _c ,Y _c	17,3	1,1				
	Rayon de torsion	r _x , r _y	2,2	7,0				
Potroite	Superficie totale	S∑retraits					0	
Retraits	Superficie max	Sretrait max					0	
	Total							28840

Tableau 8 : Caractéristiques bâtiment Cas 4 « Bâtiment en L»-Garage

✓ Régularité en plan

L'examen des différents critères de régularité en plan définis au § 4.2.3.2 de l'EC8 est présenté ci-dessous :

• Corps principal

Paramètre		Valeur	Seuil EC8	Critère vérifié
Symétrie en plan				non
Compacité	Sretrait max/Splancher	10%	≤ 5%	non
Elancement	L _{max} /L _{min}	1,1	≤4	oui
Excentricité structurale	e _{0x} /r _x	0,15	≤ 0,3	oui
	e _{0y} /r _y	0,35	≤ 0,3	non
	r _x / I _s	1,4	≥1	oui
	r _Y / I _s	1,7	≥1	oui

Tableau 9 : Régularité en plan bâtiment Cas 4 « Bâtiment en L»-Corps principal

Paramètre	Valeur	Seuil EC8	Critère vérifié	
Symétrie en plan				oui
Compacité	Sretrait max/Splancher	0%	≤ 5%	oui

	Elancement	L _{max} /L _{min}	2,2	≤ 4	oui
STITUT TECHNOLO	Excentricité structurale	e _{0x} /r _x	0,53	≤ 0,3	non
		e _{0y} /r _y	0,55	≤ 0,3	non
		r _x ∕ls	0,7	≥1	non
		r _Y / I _s	2,2	≥1	oui

Tableau 10 : Régularité en plan bâtiment Cas 4 « Bâtiment en L»-Garage

Figure 19 : Vue en plan - Cas 4 « Bâtiment en L » - implantation des bracons corps principal

5. Résultats d'analyses des configurations de base

5.1.1 Cas 1 « Croupes imbriquées »

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèles sans stabilisation

Modèle 3D – Méthode des Forces Latérales

Modèles avec stabilisation

Modèle 3D – Analyse modale

Modèle 2D-stab – Méthode des Forces Latérales

Synthèse des résultats

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode	thode sans stabilisat		av	ion	
	d'analyse	Chainages		Chainages		Bracons
		Mz _{Max} (kN m)	N _{concom} (kN)	Mz _{Max} (kN m)	N _{concom} (kN)	N _{Max} (kN)
3D	Modale	5,5	1,2	4,3	4,2	15,5
3D	Forces latérales	19,5	3,4	6,4	7,0	27,1
2D stab	Forces latérales	29,5	0	7,5	3,0	30,0
	Toblogy 11 · Eff	orto movim	Coo 1	" Croupoo ir	nhriquógo »	

Tableau 11 : Efforts maximaux – Cas 1 « Croupes imbriquées »

5.1.2 Cas 2 : « Quatre pans »

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèles sans stabilisation

Modèle 3D – Analyse modale

Modèle 2D stab – Méthode des Forces Latérales

Déplacements=17709.29mm umin=-12.44mm umax=1408.74mm vmin=-95.17mm vmax=17709.29mm Figure 34 : Déplacements sous 0,3Ex+Ey Mzmin=-52.69kN*m (N0 52) Mzmax=52.69kN*m (N0 52)

Figure 35 : Enveloppe des moments fléchissants hors plan des murs dans les chainages

Modèles avec stabilisation

Modèle 3D – Méthode des Forces Latérales répartition linéaire

Synthèse des résultats

Les efforts maximaux obtenus avec les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode sans stabilisation		abilisation	avec stabilisation			
	d'analyse	Chainages		Chainages		Bracons	
		Mz _{Max} (kN.m)	N _{concom} (kN)	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)	
3D	Modale	3,6	1,0	3,1	0,5	6,6	

3D	Forces latérales	52,7	2,5	8,9	1,3	15,9
2D stab	Forces latérales	69,3	0	9,9	5,9	15,9

Tableau 12 : Efforts maximaux – Cas 2 « Quatre pans »

5.1.3 Cas 3 : « Deux pans avec avancée »

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèles sans stabilisation

Modèle 2D stab – Méthode des Forces Latérales

Modèles avec stabilisation

Modèle 3D – Méthode des Forces Latérales

Synthèse des résultats

Les efforts maximaux obtenus avec les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode sans		sans stabilisation		avec stabilisation			
	d'analyse	Chainages		Chainages		Bracons		
		Mz _{Max} (kN.m)	N _{concom} (kN)	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)		
3D	Modale	6,2	1,1	4,7	1,5	12,9		
3D	Forces latérales	35,0	2,4	6,7	2,3	22,3		
2D stab	Forces latérales	57,8	0	9,8	4,5	22,4		

Tableau 13 : Efforts maximaux – Cas 3 « Deux pans avec avancée »

5.1.4 Cas 4 : « Bâtiment en L »

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèle 3D – Analyse modale Image: Strategy of the strategy of

Modèle 2D-stab – Méthode des Forces Latérales

Modèles avec stabilisation

Modèle 3D – Méthode des Forces Latérales

Synthèse des résultats

Les efforts maximaux obtenus avec les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode sans stabilisation		abilisation	avec stabilisation			
	d'analyse	Chainages		Chainages		Bracons	
		Mz _{Max} (kN.m)	N _{concom} (kN)	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)	
3D	Modale	4,3	0,4	4,9	2,1	8,9	
3D	Forces latérales	41,6	0,3	9,7	8,7	20,7	
2D-stab	Forces latérales	64,4	0	9,9	11,7	21,5	

Tableau 14 : Efforts maximaux – Cas 4 « Bâtiment en L »

5.2 Modifications de configurations

5.2.1 Réduction de longueurs de murs travaillants

Cas 1 « Croupes imbriquées »

La configuration de base a été modifiée en faisant varier les longueurs de murs travaillants dans la direction X en considérant les parties de murs repérées 3.1, 3.2 puis 4.3, sur la figure suivante comme non travaillantes.

Figure 68 : Vue en plan - Cas 1 « Croupes imbriquées », variantes avec suppression de parties de mur travaillantes suivant X

• Mur 3.1 non travaillant

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèle 3D – Analyse modale

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode	av	ion	
	d'analyse	Chainages		Bracons
		Mz _{Max}	Nconcom	N _{мах}
		(kN.m)	(kN)	(kN)

3D	Modale	4,6	3,0	15,8
3D	Forces latérales	6,4	7,0	27,1
2D stab	Forces latérales	7,5	3,0	30,0
Tables		0	14	(many second second

Tableau 15 : Efforts maximaux – Cas 1, Mur 3.1 non travaillant

• Murs 3.1 et 3.2 non travaillants

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèle 3D – Méthode des Forces Latérales

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Méthode	av	ion	
d'analyse	Chainages		Bracons
	Mz _{Max}	N _{concom}	N _{Max}
	(kN.m)	(kN)	(kN)
Modale	4,3	4,4	31,3
Forces latérales	6,5	7,2	51,1
Forces latérales	7,5	3,0	30,0
	Méthode d'analyse Modale Forces latérales Forces latérales	Méthode aver d'analyse Chair Mz _{Max} (kN.m) Modale 4,3 Forces latérales 6,5 Forces latérales 7,5	Méthode d'analyseavec stabilisat ChainagesMZMax (kN.m)Nconcom (kN.m)Modale4,3Forces latérales6,5Forces latérales7,53,0

Tableau 16 : Efforts maximaux – Cas 1, Murs 3.1 et 3.2 non travaillants

• Mur 4.3 non travaillant

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèle 3D – Analyse modale

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode	ave	ec stabilisation		
	d'analyse	d'analyse Chainages Mz _{Max} N _{concom}		Bracons	
				N _{Max}	
		(kN.m)	(kN)	(kN)	
3D	Modale	4,7	5,1	17,8	

3D	Forces latérales	6,5	16,3	26,8			
2D stab	Forces latérales	7,5	3,0	30,0			
Tableau 47. Effects maxima un Oas 4 Mar 40 man travaillent							

Tableau 17 : Efforts maximaux – Cas 1, Mur 4.3 non travaillant

Cas 2 « Quatre pans »

La configuration de base a été modifiée en réduisant la longueur de murs travaillants dans la direction Y en considérant la partie de murs B.1, sur la figure suivante comme non travaillante.

Figure 81 : Vue en plan - Cas 2 « Quatre pans » variante avec suppression d'un élément de mur travaillant suivant Y

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

Modèle 3D – Analyse modale

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode	avec stabilisation							
	d'analyse	Chainages		Bracons					
		Mz_{Max}	N _{concom}	N _{Max}					
		(kN.m)	(kN)	(kN)					
3D	Modale	2,43	0,7	5,5					
3D	Forces latérales	16,2	0,4	18,4					
2D stab	Forces latérales	9,9	5,9	15,9					

Tableau 18 : Efforts maximaux – Cas 2, Mur B1 non travaillant

5.2.2 Ajout d'un étage

Cas 1 « Croupes imbriquées »

La configuration de base a été modifiée en ajoutant un étage avec une répartition et hauteur des murs identiques à celles du RdC.

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

• Modèles sans stabilisation

Modèle 3D – Méthode des Forces Latérales

• Modèles avec stabilisation

Modèle 3D – Analyse modale

Modèle 2D stab – Méthode des Forces Latérales

• Synthèse des résultats

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle	Méthode	sans sta	abilisation	avec stabilisation				
	d'analyse	Cha	Chainages		Chainages			
		Mz _{Max} (kN.m)	N _{concom} (kN)	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)		
3D	Modale	8,6	1,6	6,4	7,7	17,8		
3D	Forces latérales	11,0	4,2	6,3	16,7	16,1		
2D stab Forces latérales		49,4	0	7,9	3,2	31,8		

Tableau 19 : Efforts maximaux – Cas 1 « Croupes imbriquées », avec étage

✓ Cas 2 « Quatre pans »

La configuration de base a été modifiée en ajoutant un étage avec une répartition et hauteur des murs identiques à celles du RdC.

L'allure des déformées et le diagramme enveloppe des moments fléchissants hors plan des murs dans les chainages obtenus avec les différentes analyses effectuées sont présentés ci-dessous :

• Modèles sans stabilisation

Modèle 3D – Analyse modale

Modèle 2D stab – Méthode des Forces Latérales

Modèles avec stabilisation

Modèle 3D – Méthode des Forces Latérales

• Synthèse des résultats

Les efforts maximaux obtenus pour les différentes analyses effectuées sont récapitulés dans le tableau suivant :

Modèle

avec stabilisation

	Méthode	Chai	inages	Chair	Bracons	
	d'analyse	Mz _{Max} (kN.m)	N _{concom} (kN)	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)
3D	Modale	3,0	1,9	3,4	2,8	9,3
3D	Forces latérales	9,9	1,9	4,8	1,2	14,5
2D stab	Forces latérales	49,4	0	10,7	8,0	25,2

Tableau 20 : Efforts maximaux – Cas 2 « Quatre pans » avec étage

6. SYNTHESE

6.1 Configurations de base

Les quatre cas d'étude qui nous ont été soumis sont des bâtiments à simple RDC.

Les principales caractéristiques de régularité en plan (compacité et excentricité structurale) et les valeurs maximales d'effort dans les chainages horizontaux en tête de murs et dans les bracons obtenus pour les différentes analyses effectuées sont récapitulés ci-dessous.

	Régula	gularité en plan					ixi	
Cas	compacité	exce struc	ntricité cturale	Modèle	Méthode d'analyse	Chainages		Bracons
	Sretrait max /S _{plancher}	[e₀/r] max	[r/l _s] min			Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)
				20	Modale	4,3	4,2	15,5
1 « Croupes imbriquées »	120/	0,6	1,2	30	FL	6,4	7,0	27,1
	13%			2D-stab	FL	7,5	3,0	30,0
				2D st	2D stab/3DFL			111%
				20	Modale	3,1	0,5	6,6
2	20/	0.7	1,2	30	FL	8,9	1,3	15,9
« Quatre pans »	3%	0,7		1,2	2D-stab	FL	9,9	5,9
				2D st	ab/3DFL	111%		100%
3		470/ 0.4	1.0	3D	Modale	4,7	1,5	12,9
«Deux	170/				FL	6,7	2,3	22,3
pans avec	1770	0,4	۲,۷	2D-stab	FL	9,8	4,5	22,4
avancée»				2D st	2D stab/3DFL			100%
4				20	Modale	4,9	2,1	8,9
4 « Pôtimont on	10%	0.55	0.7	30	FL	9,7	8,7	Bracons N _{Max} (kN) 15,5 27,1 30,0 111% 6,6 15,9 15,9 15,9 100% 12,9 22,3 22,4 100% 8,9 20,7 21,5 104%
	1070	0,55	0,7	2D-stab	FL	9,9	11,7	21,5
L <i>"</i>				2D st	ab/3DFL	102%		104%

Tableau 21 : Synthèse résultats configurations de base

Les quatre bâtiments étudiés sont irréguliers en plan :

- trois des quatre bâtiments comportent au moins un retrait de surface supérieure à 5% de la surface de plancher
- les critères d'excentricité structurale (e₀/r ≤0,3r et r/l₅≥1) ne sont vérifiés sur aucun des bâtiments.

Les analyses par la méthode des forces latérales, effectuées avec une valeur approchée de la période fondamentale conduisant à la valeur d'accélération au plateau, sont plus défavorables que les analyses modales.

Pour les quatre cas étudiés, les efforts les plus importants dans les chainages et les bracons sont toujours obtenus avec l'analyse par la méthode simplifiée dans le plan du système de stabilisation.

Par rapport aux résultats sur modèles spatiaux analysés avec la méthode des forces latérales, les niveaux d'effort maximaux atteignent :

- 102% (cas 4) à 146% (cas 3) pour les moments maximaux dans les chainages
- 100% (cas 2 et 3) à 111% (cas 1) pour les efforts normaux dans les bracons.

6.2 Configurations modifiées

6.2.1 Réduction des longueurs de mur travaillantes

Les ratios de longueurs travaillantes des murs dans la direction considérée et les valeurs maximales d'effort dans les chainages horizontaux en tête de murs et dans les bracons obtenus pour les différentes analyses effectuées sont récapitulés ci-dessous.

								Efforts maxi			
	Cas	R	atio lo	ngueu	rs	Madàla	Méthode	Chair	nages	Bracons	
Gas		travaillantes			wodele	d'analyse	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)		
		Lm₁/ Lx	Lm ₂ / Lx	Lm₃/ Lx	Lm₄/ Lx	2D-stab	FL	7,5	3,0	30,0	
	config. de	42	22	12	45	3D	Modale	4,3	4,2	15,5	
		4Z 0/	3Z 0/	0/	40	30	FL	6,4	7,0	27,1	
	6450	70	70	70	70	2D sta	b/3DFL	117%		111%	
		42	22		45	3D	Modale	4,6	3,0	15,8	
4	travaillant	4Z %	3Z %	7%	40	50	FL	6,4	7,0	27,1	
•	travailant	70	70		70	2D sta	nb/3DFL	117%		100%	
	murs 2.1 et	72	73		45	20	Modale	4,3	4,4	31,3	
	2.2 non	13		0%	45 %	30	FL	6,5	7,2	51,1	
	travaillants	70	70			2D stab/3DFL		115%		59%	
	mur 3 4 non	72 72	73	13	21 %	3D	Modale	4,7	5,1	17,8	
	travaillant	%					FL	6,5	16,3	26,8	
		70	70	70	70	2D sta	b/3DFL	115%		101%	
		Lm₄/ Ly	Lm _₿ / Ly	Lmc/ Ly	Lm⊳/ Ly	2D-stab	FL	9,9	5,9	15,9	
	a a mation and a	25				20	Modale	3,1	0,5	6,6	
~	contig. de 35	30	9%	33 0/	94 %	30	FL	8,9	1,3	15,9	
2	5236	/0		/0	/0	2D sta	b/3DFL	111%		100%	
	mur B 1 non	35		33	94	חצ	Modale	2,43	0,7	5,5	
	travaillant	%	0%	33 0/	94 3D % 2D s	50	FL	16,2	0,4	18,4	
	llavalliant	%		70		2D sta	nb/3DFL	61%		84%	

Tableau 22 : Synthèse résultats configurations modifiées par réduction de longueurstravaillantes

Pour les deux cas étudiés, en réduisant les ratios de longueurs travaillantes de certains murs, même à des ratios inférieurs à 10% de la longueur maximale du bâtiment dans la direction considérée, on ne constate pas d'accroissement significatif des valeurs maximales d'efforts dans les bracons et/ou les chainages pour les modèles spatiaux analysés.

Seule la suppression complète de la résistance en contreventement d'un mur conduit à l'obtention de valeurs maximales excédant celles précédemment obtenues avec l'analyse par la méthode simplifiée dans le plan du système de stabilisation. Dans ce cas, l'hypothèse d'un appui bloquant les translations dans la direction du mur à chaque extrémité n'est plus valable.

Une telle situation est principalement à craindre en angle saillant de mur où les longueurs travaillantes sont nécessairement réduites.

Afin de rester sécuritaire, il est donc nécessaire de définir des valeurs minimales de longueur ou de ratio de longueurs travaillantes pour pouvoir considérer un blocage cette méthode simplifiée.

6.2.2 Bâtiment à étage

Les valeurs maximales d'effort dans les chainages horizontaux en tête de murs et dans les bracons obtenus pour les différentes analyses effectuées sont récapitulés ci-dessous.

INSTITUT

TEC	0.010115	Potio ourfooo	Efforts n				ixi
	Cas		Modèle Méthode Chainag	nages	Bracons		
			MODELE	d'analyse	Mz _{Max} (kN.m)	N _{concom} (kN)	N _{Max} (kN)
			20	Modale	4,3	4,2	15,5
	aanfin da	config. de		FL	6,4	7,0	27,1
	coniig. de			FL	7,5	3,0	30,0
4	Dase		2D stab/3DFL		117%		111%
1	=	Etage ntique au S _{pR+1} /S _{pRdc} =1 RdC	3D	Modale	6,4	7,7	17,8
	Etage identique au			FL	6,3	16,7	16,1
			2D-stab	FL	7,9	3,2	31,8
	Ruo		2D stab/3DFL		125%		198%
		onfig. de	3D	Modale	3,1	0,5	6,6
	a sufficients			FL	8,9	1,3	15,9
	config. de		2D-stab	FL	9,9	5,9	15,9
2	Dase		2D st	2D stab/3DFL			100%
2		Etage entique au S _{pR+1} /S _{pRdc} =1	20	Modale	3,4	2,8	9,3
	Etage		30	FL	4,8	1,2	14,5
			2D-stab	FL	10,7	8,0	25,2
	RUC			ab/3DFL	223%		174%

Tableau 23 : Synthèse résultats configurations modifiées par ajout d'étage

Avec l'ajout d'un étage de configuration strictement identique à celle du RdC, les valeurs maximales d'efforts obtenues avec l'analyse par la méthode simplifiée dans le plan du système de stabilisation sont nettement supérieures à celles obtenues avec les modèles spatiaux analysés avec la méthode des forces latérales.

7. METHODE SIMPLIFIEE

7.1 Domaine d'application

7.1.1 Zones sismiques et catégorie d'importance

- Zones sismiques 2 à 4
- Catégorie d'importance II

7.1.2 Type de construction

- Maisons individuelles et petits bâtiments d'habitation collectifs limités à R+1 avec combles non aménageables
- Charpentes industrialisées en bois suivant NF DTU 31.3
- Murs en maçonnerie de petits éléments suivant NF DTU 20.1

7.1.3 Configuration en plan

- Dimensions maximales du rectangle (L_{max} x L_{min}) dans lequel s'inscrit le bâtiment :
 - L_{max} ≤ 20 m
 - Elancement L_{max}/L_{min} limité à 2,5
- Disposition des murs de contreventement :
 - longueur maximale de façade entre murs de refend limitée à 12 m ;
 - présence dans chaque direction principale d'au moins deux murs de contreventement parallèles, de longueur supérieure à 30% de la longueur du bâtiment dans la direction considérée ; ces deux murs doivent être distant d'au moins 75% de la longueur du bâtiment dans la direction perpendiculaire à leur plan.
- Limitation des retraits par rapport au polygone convexe circonscrit au plancher de surface $S_{\mbox{\tiny p}}$:
 - Nombre de retraits ≤6
 - Surface d'un retrait Ai≤0,15 S_p
 - Somme des surfaces de tous les retraits $\Sigma Ai \leq 0,3S_p$

7.1.4 Configuration en élévation

- Hauteur des façades limitée à 3,3 m en RDC et 6,6 m en R+1
- Surface de plancher d'étage n'excédant pas celui du RdC : S_{pR+1}≤S_{pRdc}
- Continuité des murs de contreventement sur toute la hauteur du bâtiment

7.2 Système de stabilisation

7.2.1 Bracons bois

Les éléments de stabilisation en bois massif ou reconstitué, dénommés « bracons » sont disposés dans le plan des entraits.

Les bracons sont fixés en sous-face des entraits de manière à assurer leur stabilisation vis-à-vis du risque de flambement.

Aux extrémités des bracons, la liaison avec le chaînage horizontal en béton armé est assurée par des connecteurs métalliques tridimensionnels (étriers, équerres) dont les performances sont définies par une Evaluation Technique Européenne.

L'ancrage dans le béton est effectué par des chevilles métalliques dont les caractéristiques essentielles et qualification en zone sismique sont définies par une Evaluation Technique Européenne.

7.2.2 Chainages

Les chainages respectent les dispositions complémentaires définies au §9.5.3 de l'EC8.

7.3 Principes d'analyse

7.3.1 Coefficient de comportement

Le coefficient de comportement q à utiliser pour les maçonneries chaînées est q= 2,5, conformément au § 9.3 NA de l'EC8.

7.3.2 Détermination des actions sismiques

Les actions sismiques agissant dans le plan de la stabilisation sont déterminées suivant la méthode des forces latérales, telle que décrite au §3.1.

Pour cette étape, il y a lieu d'estimer précisément les masses appliquées en tête de chacun des murs pour l'analyse sismique.

Ces masses sont constitués par:

- Les masses de murs associée à la moitié de la hauteur de chacun des murs concernés,
- Les masses associées à la descente de charges de la toiture pour chacun des murs.

7.3.3 Modélisation de la stabilisation

Aux extrémités des chainages horizontaux les liaisons sont considérées articulées aux intersections de murs.

Aux extrémités des bracons, les liaisons avec le chainage sont considérées articulées.

Aux intersections de mur, chaque extrémité de mur constitue un point d'appui qui bloque les translations dans la direction du mur.

7.4 Justifications

Suivant le §4.4.2.5 de l'EC8, les éléments du système de stabilisation et leurs liaisons doivent être sur-résistants par rapport aux effets de l'action sismique.

7.4.1 Chainages

Les chainages soumis à de la flexion composée doivent être justifiés conformément à l'EC2. Les efforts résistants dans les chainages en béton armé pourront être déterminés à partir des diagrammes d'interaction Moment résistant / Effort Normal résistant à l'ELU-sismique présentés ci-dessous :

Section béton armé 150*150 mm2

Figure 110 : Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN) C20/25 – 4 HA10 (source CSTB)

Figure 111 : Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN) C20/25 – 4 HA12 (source CSTB)

Section béton armé 150*150 mm2

Figure 112 : Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN) C25/30 – 4 HA10 (source CSTB)

Figure 113 : Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN) C25/30 – 4 HA12 (source CSTB)

Figure 114 : Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN) C30/37 – 4 HA10 (source CSTB)

• Armatures 4HA 12

Section béton armé 150*150 mm2

Figure 115 : Diagramme d'interaction Moment résistant (abscisses en KN.m) / Effort Normal (ordonnées en kN) C30/37 – 4 HA12 (source CSTB)

7.4.2 Bracons

Les bracons soumis à un effort normal (traction ou compression) sont justifiés conformément à l'EC5.

Le dimensionnement est mené en majorant les efforts de calcul par le coefficient de surrésistance $\gamma_d=1,3$, compte tenu du risque de rupture fragile.